Non-Local Means Variants for Denoising of Diffusion-Weighted and Diffusion Tensor MRI
نویسندگان
چکیده
Diffusion tensor imaging (DT-MRI) is very sensitive to corrupting noise due to the non linear relationship between the diffusion-weighted image intensities (DW-MRI) and the resulting diffusion tensor. Denoising is a crucial step to increase the quality of the estimated tensor field. This enhanced quality allows for a better quantification and a better image interpretation. The methods proposed in this paper are based on the Non-Local (NL) means algorithm. This approach uses the natural redundancy of information in images to remove the noise. We introduce three variations of the NL-means algorithms adapted to DW-MRI and to DT-MRI. Experiments were carried out on a set of 12 diffusion-weighted images (DW-MRI) of the same subject. The results show that the intensity based NL-means approaches give better results in the context of DT-MRI than other classical denoising methods, such as Gaussian Smoothing, Anisotropic Diffusion and Total Variation.
منابع مشابه
Simultaneous Smoothing & Estimation of DTI via Robust Variational Non-local Means
Regularized diffusion tensor estimation is an essential step in DTI analysis. There are many methods proposed in literature for this task but most of them are neither statistically robust nor feature preserving denoising techniques that can simultaneously estimate symmetric positive definite (SPD) diffusion tensors from diffusion MRI. One of the most popular techniques in recent times for featu...
متن کاملStructure-adaptive sparse denoising for diffusion-tensor MRI
Diffusion tensor magnetic resonance imaging (DT-MRI) is becoming a prospective imaging technique in clinical applications because of its potential for in vivo and non-invasive characterization of tissue organization. However, the acquisition of diffusion-weighted images (DWIs) is often corrupted by noise and artifacts, and the intensity of diffusion-weighted signals is weaker than that of class...
متن کاملEvaluation of Non-Local Means Based Denoising Filters for Diffusion Kurtosis Imaging Using a New Phantom
Image denoising has a profound impact on the precision of estimated parameters in diffusion kurtosis imaging (DKI). This work first proposes an approach to constructing a DKI phantom that can be used to evaluate the performance of denoising algorithms in regard to their abilities of improving the reliability of DKI parameter estimation. The phantom was constructed from a real DKI dataset of a h...
متن کاملDifferentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...
متن کاملNon-local mean denoising in diffusion tensor space
The aim of the present study was to present a novel non-local mean (NLM) method to denoise diffusion tensor imaging (DTI) data in the tensor space. Compared with the original NLM method, which uses intensity similarity to weigh the voxel, the proposed method weighs the voxel using tensor similarity measures in the diffusion tensor space. Euclidean distance with rotational invariance, and Rieman...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 10 Pt 2 شماره
صفحات -
تاریخ انتشار 2007